Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions

نویسندگان

  • Ahmed Moustafa
  • Adrian Reyes-Prieto
  • Debashish Bhattacharya
چکیده

BACKGROUND The photosynthetic organelle (plastid) originated via primary endosymbiosis in which a phagotrophic protist captured and harnessed a cyanobacterium. The plastid was inherited by the common ancestor of the red, green (including land plants), and glaucophyte algae (together, the Plantae). Despite the critical importance of primary plastid endosymbiosis, its ancient derivation has left behind very few "footprints" of early key events in organelle genesis. METHODOLOGY/PRINCIPAL FINDINGS To gain insights into this process, we conducted an in-depth phylogenomic analysis of genomic data (nuclear proteins) from 17 Plantae species to identify genes of a surprising provenance in these taxa, Chlamydiae bacteria. Previous studies show that Chlamydiae contributed many genes (at least 21 in one study) to Plantae that primarily have plastid functions and were postulated to have played a fundamental role in organelle evolution. Using our comprehensive approach, we identify at least 55 Chlamydiae-derived genes in algae and plants, of which 67% (37/55) are putatively plastid targeted and at least 3 have mitochondrial functions. The remainder of the proteins does not contain a bioinformatically predicted organelle import signal although one has an N-terminal extension in comparison to the Chlamydiae homolog. Our data suggest that environmental Chlamydiae were significant contributors to early Plantae genomes that extend beyond plastid metabolism. The chlamydial gene distribution and protein tree topologies provide evidence for both endosymbiotic gene transfer and a horizontal gene transfer ratchet driven by recurrent endoparasitism as explanations for gene origin. CONCLUSIONS/SIGNIFICANCE Our findings paint a more complex picture of gene origin than can easily be explained by endosymbiotic gene transfer from an organelle-like point source. These data significantly extend the genomic impact of Chlamydiae on Plantae and show that about one-half (30/55) of the transferred genes are most closely related to sequences emanating from the genome of the only environmental isolate that is currently available. This strain, Candidatus Protochlamydia amoebophila UWE25 is an endosymbiont of Acanthamoeba and likely represents the type of endoparasite that contributed the genes to Plantae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida) that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red al...

متن کامل

Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants.

The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis,...

متن کامل

Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions

A single cyanobacterial primary endosymbiosis that occurred approximately 1.5 billion years ago is believed to have given rise to the plastid in the common ancestor of the Plantae or Archaeplastida--the eukaryotic supergroup comprising red, green (including land plants), and glaucophyte algae. Critical to plastid establishment was the transfer of endosymbiont genes to the host nucleus (i.e., en...

متن کامل

Evolutionary and functional genomics of photosynthetic eukaryotes

My dissertation focuses on genome and functional evolution of photosynthetic eukaryotes and the design and implementation of computational methods and tools to enable genome-wide studies to investigate these taxa. In CHAPTER 1, I introduce what is currently known about the evolution of plastids and photosynthesis in eukaryotes, an overview of marine harmful algae, and the specific aims of my di...

متن کامل

Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.

Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008